

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

SE.COM

CHEMISTRY 5070/12

Paper 1 Multiple Choice May/June 2012

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

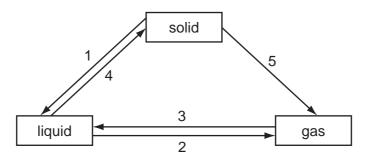
Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

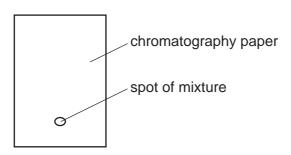
A copy of the Periodic Table is printed on page 16.

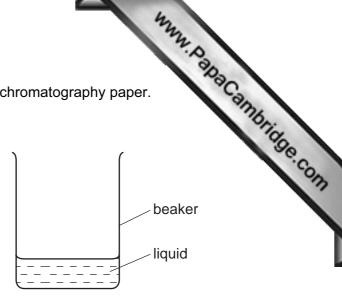
1 The diagram shows some of the changes of state.

Which statement is correct?

- A Although the change is not shown on the diagram, a gas can change directly to a solid.
- **B** The changes 1 and 3 involve particles moving closer together.
- **C** The changes 2 and 4 involve particles moving further apart.
- **D** The changes 3, 4 and 5 all involve the release of energy.
- 2 Which gas is **not** obtained industrially by fractional distillation?
 - A ammonia
 - **B** argon
 - C nitrogen
 - **D** oxygen
- 3 When dilute hydrochloric acid is added to a white powder a gas is produced.

The solution remaining is tested separately with small volumes of both aqueous ammonia and aqueous sodium hydroxide.

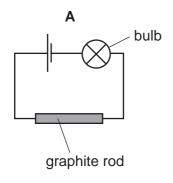

A white precipitate is produced in both tests.

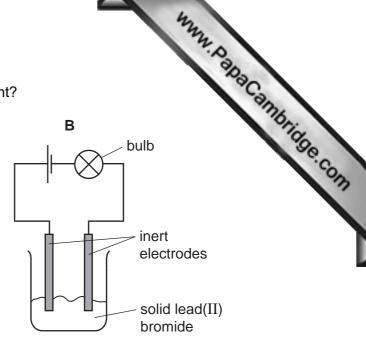

What is the white powder?

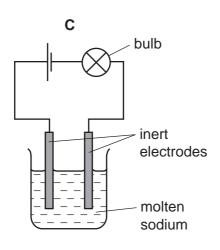
- A aluminium oxide
- B calcium oxide
- **C** copper(II) carbonate
- **D** zinc carbonate

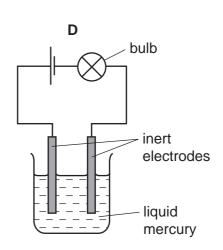
4 A mixture of two substances is spotted onto a piece of chromatography paper.

The paper is inserted into a beaker containing a liquid.



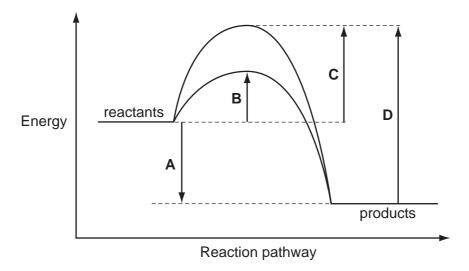



For separation of the substances to occur the spot of mixture must


- A be placed so that the spot is just below the level of the liquid.
- **B** be soluble in the liquid.
- \mathbf{C} contain substances of the same $R_{\rm f}$ values.
- **D** contain substances that are coloured.
- 5 Which reagent could be used to distinguish between dilute nitric acid and dilute hydrochloric acid?
 - A aqueous barium chloride
 - B aqueous silver nitrate
 - C aqueous sodium hydroxide
 - **D** copper(II) carbonate
- **6** What is the structure of sand?
 - A a macromolecule
 - B an ionic lattice
 - C a polymer
 - **D** a simple molecule
- **7** Pentane, C_5H_{12} , has a higher boiling point than propane, C_3H_8 . Which statement explains the difference in boiling point?
 - **A** Carbon-carbon single bonds are stronger than carbon-hydrogen bonds.
 - **B** Pentane has more covalent bonds to break.
 - **C** Pentane does not burn as easily as propane.
 - **D** The forces of attraction between pentane molecules are stronger than those between propane molecules

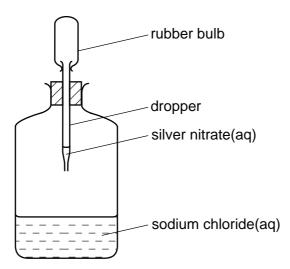
8 In which set of apparatus will the bulb be least bright?

9 Four substances have the following electrical properties.


substance	property			
W	does not conduct under any conditions			
X conducts only in aqueous solution				
Y	conducts in both the molten and solid states			
Z	conducts in both the molten and aqueous states			

What are these four substances?

	W	Х	Y	Z
Α	HC1	S	NaC <i>l</i>	Pb
В	Pb	HC1	NaC <i>l</i>	S
С	S	HC1	Pb	NaC <i>l</i>
D	S	NaC <i>l</i>	HC1	Pb


www.papaCambridge.com 10 The energy profile diagram shows the pathways for a reaction with and without a cata

Which energy change is the activation energy for the catalysed reaction?

- **11** Which statement about conduction of electricity is correct?
 - Electricity is conducted in aqueous solution by electrons.
 - В Electricity is conducted in a metal wire by ions.
 - C Electricity is conducted in a molten electrolyte by electrons.
 - D Electricity is conducted in an acid solution by ions.

www.papaCambridge.com 12 When the rubber bulb of the dropper in the diagram is squeezed, the aqueous silver into the aqueous sodium chloride and a white precipitate of silver chloride is formed.

What happens to the total mass of the bottle and contents?

- It increases due to the formation of the heavy precipitate.
- В It remains the same because only a physical change has taken place.
- C It decreases because heat is evolved.
- It remains the same because none of the products escapes from the bottle. D
- 13 What has the same mass as 0.25 mol of copper atoms?
 - A 0.5 mol of oxygen molecules
 - **B** 1 mol of sulfur dioxide molecules
 - C 1.5 mol of water molecules
 - **D** 2 mol of oxygen atoms
- 14 Which change always takes place when an aqueous solution of copper(II) sulfate is electrolysed?
 - **A** Copper is deposited at the negative electrode.
 - В Oxygen is evolved at the positive electrode.
 - Sulfate ions move towards the negative electrode. С
 - **D** The colour of the solution fades.

15	Wh	ich substance will conduct electricity without being chemically changed?
	Α	sodium chloride solution

- В solid iron
- C solid sodium chloride
- D solid sulfur
- **16** A sample of air was bubbled into water. The pH of the water slowly changed from 7 to 6.

Which gas in the sample caused this change?

- carbon dioxide
- **B** carbon monoxide
- C nitrogen
- D oxygen
- The oxide Q dissolves in water to form a colourless solution. This solution reacts with sodium carbonate to produce carbon dioxide.

What is Q?

- copper(II) oxide
- sodium oxide
- sulfur dioxide
- zinc oxide D
- 18 The following statements about dilute sulfuric acid are all correct.
 - 1 Addition of Universal Indicator shows that the solution has a pH value of less than 7.0.
 - 2 A white precipitate is formed when aqueous barium nitrate is added.
 - 3 The solution reacts with copper(II) oxide, forming a blue solution.
 - The solution turns anhydrous copper(II) sulfate from white to blue.

Which two statements confirm the acidic nature of the solution?

1 and 2 В 1 and 3 2 and 4 D 3 and 4

- 19 Which ion reacts with aqueous ammonia to give a precipitate that dissolves in an excess of ammonia?
 - **A** $Al^{3+}(aq)$
- **B** $Fe^{2+}(aq)$ **C** $Fe^{3+}(aq)$
- **D** $Zn^{2+}(aq)$

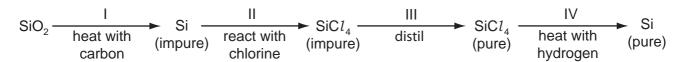
- 20 Which element is most likely to be used as an industrial catalyst?
 - A Li
- В Cs
- Rh
- Po
- www.PapaCambridge.com 21 Which compound when reacted with sulfuric acid produces a product which is used as fertiliser?
 - Α ammonia
 - В calcium carbonate
 - C calcium hydroxide
 - **D** sodium hydroxide
- 22 In which reaction is the underlined substance behaving as an oxidising agent?

A BaC
$$l_2$$
 + Na₂SO₄ \rightarrow BaSO₄ + 2NaC l

$$\textbf{B} \quad 3\text{CuO} \,\, + \,\, 2\text{NH}_3 \,\, \rightarrow \,\, 3\text{Cu} \,\, + \,\, \text{N}_2 \,\, + \,\, 3\text{H}_2\text{O}$$

$$\textbf{C} \quad 2\text{FeC} l_2 \, + \, \underline{\text{C} l_2} \, \rightarrow \, 2\text{FeC} l_3$$

$$\textbf{D} \quad O_2 \ \textbf{+} \ 2SO_2 \ \rightarrow \ 2SO_3$$


- 23 Which statements are true about all the noble gases?
 - The number of protons in their atoms equals the number of neutrons. 1
 - 2 The number of protons in their atoms does not equal the number of electrons.
 - 3 They all have eight electrons in their outer shell.
 - They do not react to form ionic compounds.
 - **A** 1, 2 and 3
 - B 1 and 3 only
 - C 3 only
 - D 4 only
- 24 How many electrons and protons are in an ion of an element in Group 2 of the Periodic Table?

	Number of electrons	Number of protons
Α	6	4
В	10	12
С	22	20
D	139	137

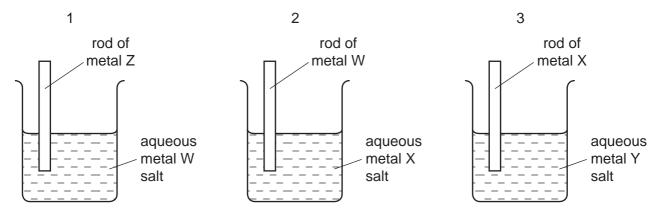
25 A metal X forms oxides with the formulae XO and X₂O₃.

Where is **X** in the Periodic Table?

- A in Group II
- B in Group III
- C the second Period
- **D** in the transition elements
- 26 What is a characteristic of a weak acid?
 - A It does not react with sodium carbonate.
 - **B** It forms an aqueous solution with a pH of 8.
 - **C** It is only partially ionised when added to water.
 - **D** It turns litmus solution blue.
- 27 The reaction scheme represents the process for obtaining pure silicon.

In which of the stages is the silicon reduced?

- A I only
- B I and II
- C I and IV
- D II and III
- 28 Which metal can be obtained from its oxide using hydrogen?
 - A calcium
 - **B** copper
 - C magnesium
 - **D** zinc
- **29** Which substance undergoes decomposition because of the high temperature in the blast furnace?
 - A coke
 - B calcium carbonate
 - C calcium silicate
 - **D** slag


A C +
$$CO_2 \rightarrow 2CO$$

$$\textbf{B} \quad \textbf{C} \, + \, \textbf{O}_2 \, \rightarrow \, \textbf{CO}_2$$

$$\textbf{C} \quad \text{CaO} \, + \, \text{SiO}_2 \, \rightarrow \, \text{CaSiO}_3$$

D Fe₂O₃ + 3CO
$$\rightarrow$$
 2Fe + 3CO₂

31 Three different beakers are set up as shown.

In beaker 1 metal W is displaced from solution.

In beaker 2 metal X is displaced from solution.

In beaker 3 metal Y is displaced from solution.

What is the order of **decreasing** reactivity of the four metals?

	most reactive			least reactive
Α	W	Х	Y	Z
В	Х	Y	W	Z
С	Z	W	X	Y
D	Z	X	W	Υ

32 Aluminium is manufactured by the electrolysis of aluminium oxide.

Which substances are formed at the electrodes?

	positive electrode	negative electrode
Α	aluminium	carbon dioxide
В	aluminium	oxygen
С	carbon dioxide	aluminium
D	oxygen	carbon dioxide

33 The processes photosynthesis, respiration and fermentation all change the amoundioxide in the atmosphere.

Which processes increase the amount of carbon dioxide in the atmosphere?

- A photosynthesis and fermentation
- B photosynthesis only
- C respiration and fermentation
- **D** respiration only

34 Which process would destroy the bacteria in water?

- **A** chlorination
- **B** desalination
- **C** filtration
- **D** treatment with carbon

35 Which compound has more than two carbon atoms per molecule?

- A ethanoic acid
- **B** ethanol
- C ethene
- D ethyl ethanoate

36 The equations show some reactions of organic compounds.

Which is an addition reaction?

A
$$CH_4 + Br_2 \rightarrow CH_3Br + HBr$$

$$\textbf{B} \quad C_2H_5OH \ + \ O_2 \ \rightarrow \ CH_3CO_2H \ + \ H_2O$$

$$C$$
 $C_2H_5OH + CH_3CO_2H \rightarrow CH_3CO_2C_2H_5 + H_2O$

$$D \quad C_4H_4 + 2Br_2 \rightarrow C_4H_4Br_4$$

37 Which statement about methanol is correct?

- A It can be oxidised to form methanoic acid.
- **B** It is a constituent of alcoholic drinks.

www.PapaCambridge.com 38 A 10 cm³ sample of a gaseous hydrocarbon is completely burnt in oxygen. The total products is 70 cm³. All gas volumes are measured at room temperature and pressure.

Which equation represents the combustion of the hydrocarbon?

A
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

B
$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$$

C
$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

$$\label{eq:D} \textbf{D} \quad 2C_2H_6(g) \ + \ 7O_2(g) \ \to \ 4CO_2(g) \ + \ 6H_2O(g)$$

39 One mole of magnesium is dissolved in excess aqueous ethanoic acid, CH₃COOH.

How many moles of hydrogen, H₂, will be produced?

- **A** 0.5
- В

40 The section of a polymer chain is shown.

Which molecule would produce this polymer and by which type of polymerisation?

	molecule	type of polymerisation
Α	CH ₃ –CH=CH–CH ₃	condensation
В	CH ₃ -CH ₂ -CH=CH ₂	addition
С	CH ₃ –CH ₂ –CH ₂ –CH=CH ₂	condensation
D	CH ₃ –CH=CH–CH ₃	addition

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements DATA SHEET

Group	0	1 Hydrogen 2 Helium	11 12 14 16 19 20	27 28 31 32 35.5 40 A1 Si Posphorus Phosphorus C1 Ar Auminium Silicon Phosphorus 16 17 Argon	55 56 59 59 64 65 70 73 75 79 80 Mn Fe Co Ni Cu Zn Copper Copper </th <th>Tc Ru Rh offeneum Ag Cd In Sn 50 Tellerum Shirer 44 45 46 47 48 49 50 Tin Antimony Tellerum Inclinium <t< th=""><th>186 190 192 195 197 201 204 207 209 Rear Os I r Pt Au Hg T l'alfum Pb Bi Bismuth 75 76 77 77 78 79 81 82 83</th><th></th></t<></th>	Tc Ru Rh offeneum Ag Cd In Sn 50 Tellerum Shirer 44 45 46 47 48 49 50 Tin Antimony Tellerum Inclinium Inclinium <t< th=""><th>186 190 192 195 197 201 204 207 209 Rear Os I r Pt Au Hg T l'alfum Pb Bi Bismuth 75 76 77 77 78 79 81 82 83</th><th></th></t<>	186 190 192 195 197 201 204 207 209 Rear Os I r Pt Au Hg T l'alfum Pb Bi Bismuth 75 76 77 77 78 79 81 82 83	
Group		1 H Hydrogen			56 59 Co Iron Cobatt 28	Ru Ruthenium Rhodium 44	190 192 OS Osmium 76 177	
					48 51 52 Cr Ti V Cr Thanium Vanadium Crhomium 22 23 24 24	91 93 96 Zr Nb Mo Zirconium Nicbium Molyddenum 40 41 42	Hf Ta W Helnium Tantalum Turgsten 73 74	
	=		7 9 Li Be Lithium Beryllum 3 4	23 24 Na Mg Sodum Magnesium	39 40 45 K Ca Sc Potassium Calcium Scandum 19 20 21	85 88 89 Rb Sr Y Rubidium Strontium 39	Caesum Barum Larthanum 55 57	226 227 Fr Ra Ac Francium Radium Admirum 87 88 89

www.papaCambridge.com Lutetium **Yb** Ytterbium **T**Pullium Mo **E**rbium Fm **H**olmium Es Californium 98 5 ರ **Berkelium Terbium** Curium Curium gq Am En **Sa**marium **Pu** Plutonium Pm å Š Ра ቯ **Serium** ²³² 28 90 b = proton (atomic) number a = relative atomic mass X = atomic symbol '58-71 Lanthanoid series 190-103 Actinoid series

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.